Random hermitian matrices in an external field

نویسنده

  • P. Zinn-Justin
چکیده

In this article, a model of random hermitian matrices is considered, in which the measure exp(−S) contains a general U(N)-invariant potential and an external source term: S = N tr(V (M) + MA). The generalization of known determinant formulae leads to compact expressions for the correlation functions of the energy levels. These expressions, exact at finite N , are potentially useful for asymptotic analysis. PACS: 05.40.+j; 05.45.+b

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Matrices with External Source and KP τ Functions

Due to the unitary-invariance, we assume A = diag(a1, . . . , an), ai ∈ R without loss of generality. We consider Zn(A) as a function of eigenvalues of A, and find a KP τ function property of it. Zn(A) arises in the random matrix model with external source [7], [8], [23], [24]. Let A ∈ H be an n × n Hermitian matrix, and V (x) be a function defined on R, such that e (x) decays sufficiently fast...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

A Quick Derivation of the Loop Equations for Random Matrices

The ”loop equations” of random matrix theory are a hierarchy of equations born of attempts to obtain explicit formulae for generating functions of map enumeration problems. These equations, originating in the physics of 2-dimensional quantum gravity, have lacked mathematical justification. The goal of this paper is to provide a complete and short proof, relying on a recently established complet...

متن کامل

06 9 v 1 2 3 D ec 1 99 1 PUPT - 1282 December 4 , 1991 Unitary And Hermitian Matrices In An External Field II

We give a simple derivation of the Virasoro constraints in the Kontsevich model, first derived by Witten. We generalize the method to a model of unitary matrices, for which we find a new set of Virasoro constraints. Finally we discuss the solution for symmetric matrices in an external field. ⋆ Research supported in part by NSF grant PHY90-21984 † E-mail: [email protected]; newman@puhep...

متن کامل

A Classification Ofnon-hermitian Random Matrices

We present a classification of non-hermitian random matrices based on implementing commuting discrete symmetries. It contains 43 classes. This generalizes the classification of hermitian random matrices due to Altland-Zirnbauer and it also extends the Ginibre ensembles of nonhermitian matrices [1]. Random matrix theory originates from the work of Wigner and Dyson on random hamiltonians [2]. Sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997